Artificial Intelligence and Integrated Optimization in the Energy Sector: Advances in Photovoltaic System

Autores/as

  • Carlos D. Chiang-Guizar División de Investigación y Desarrollo, Neurotry, México
  • Jorge I. Hernandez-Martinez División de Investigación y Desarrollo, Neurotry, México
  • Perla Y. Sevilla-Camacho Cuerpo Académico de Energía y Sustentabilidad, Universidad Politécnica de Chiapas
  • Horacio I. Solis-Cisneros Tecnológico Nacional de México Campus Tuxtla Gutiérrez

DOI:

https://doi.org/10.59730/rer.v12n55a5

Palabras clave:

Digital twins, Artificial intelligence, Photovoltaic systems, Smart monitoring, Energy optimization

Resumen

The integration of artificial intelligence and digital twins in the energy sector is revolutionizing the industry, especially how solar plants are monitored and managed. Digital twins create virtual representations of physical systems, enabling early fault detection, performance optimization, and predictive simulations of operational scenarios. AI enhances these capabilities by leveraging machine learning algorithms that analyze real-time data to improve fault prediction and preventive maintenance. This article reviews both Machine-Learning and physics-based approaches for implementing digital twins in photovoltaic systems, highlighting their calibration using machine learning techniques. Furthermore, it explores current AI applications in system optimization, fault diagnosis, and predictive maintenance for photovoltaic plants. Finally, emerging trends are discussed, particularly the convergence of these technologies with the Internet of Things and intelligent automation, aiming to enhance the efficiency and reliability of solar energy generation.

Citas

• Alrifaey, M., Lim, W. H., Ang, C. K., Natarajan, E., Solihin, M. I., Juhari, M. R. M. and Tiang, S. S. (2022), ‘Hybrid deep learning model for fault detection and classification of grid-connected photovoltaic system’, IEEE Access 10, 13852–13868.

• Amaral, T. G., Pires, V. F. and Pires, A. J. (2021), ‘Fault detection in pv tracking systems using an image processing algorithm based on pca’, Energies 14(21), 7278.

• Belhachat, F., Larbes, C. and Bennia, R. (2024), ‘Recent advances in fault detection techniques for photovoltaic systems: An overview, classification and performance evaluation’, Optik – International Journal for Light and Electron Optics 306, 171797.

• Bouyeddou, B., Harrou, F., Taghezouit, B., Sun, Y. and Arab, A. H. (2022), ‘Improved semi-supervised data-mining-based schemes for fault detection in a grid-connected photovoltaic system’, Energies 15(21), 7978.

• Cao, H., Zhang, D. and Yi, S. (2023), ‘Real-time machine learning based fault detection, classification, and locating in large scale solar energy-based systems: Digital twin simulation’, Solar Energy 251, 77–85.

• Chi, X.,Wei, D., Shen, M. and He, Y. (2024), ‘A fault diagnosis method for cracks of photovoltaic modules based on calculation of equivalent circuit model parameters’, Solar Energy 283, 112970.

• Chokr, B., Chatti, N., Charki, A., Lemenand, T. and Hammoud, M. (2023), ‘Feature extraction-reduction and machine learning for fault diagnosis in pv panels’, Solar Energy 262, 111918.

• Clausen, C. S. B., Ma, Z. G. and Jørgensen, B. N. (2022), ‘Can we benefit from game engines to develop digital twins for planning the deployment of photovoltaics?’, Energy Informatics 5(Suppl 4), 42.

• Ding, K., Chen, X., Jiang, M., Yang, H., Chen, X., Zhang, J., Gao, R. and Cui, L. (2024), ‘Feature extraction and fault diagnosis of photovoltaic array based on current–voltage conversion’, Applied Energy 353, 122135.

• Ding, R.,Wu, J., Li, B. and Zhang, C. (2024), ‘A comprehensive review on fault diagnosis techniques for pv systems’, IEEE Transactions on Sustainable Energy 15, 123–145.

• Fan, X. and Li, Y. (2023), ‘Energy management of renewable based power grids using artificial intelligence: Digital twin of renewables’, Solar Energy 262, 111867.

• Ghenai, C., Husein, L. A., Nahlawi, M. A., Hamid, A. K. and Bettayeb, M. (2022), ‘Recent trends of digital twin technologies in the energy sector: A comprehensive review’, Sustainable Energy Technologies and Assessments 54, 102837.

• Jain, P., Poon, J., Singh, J. P., Spanos, C., Sanders, S. R. and Panda, S. K. (2020), ‘A digital twin approach for fault diagnosis in distributed photovoltaic systems’, IEEE Transactions on Power Electronics 35(1), 940–956.

• Kaitouni, S. I., Abdelmoula, I. A., Es-sakali, N., Mghazli, M. O., Erretby, H., Zoubir, Z., Mansouri, F. E., Ahachad, M. and Brigui, J. (2024), ‘Implementing a digital twin-based fault detection and diagnosis approach for optimal operation and maintenance of urban distributed solar photovoltaics’, Renewable Energy Focus 48, 100530.

• Kapucu, C. and Cubukcu, M. (2021), ‘A supervised ensemble learning method for fault diagnosis in photovoltaic strings’, Energy 227, 120463.

• Kapucu, T., Ozcan, E. and Akbulut, S. (2021), ‘A review on intelligent fault diagnosis in pv systems: Methods, challenges, and future directions’, Renewable and Sustainable Energy Reviews 145, 110878.

• Kellil, A., Bouchakour, Y., Khelifa, N., Menasria, H. and Bourouis, M. (2023), ‘Deep learning-based fault diagnosis in photovoltaic systems using infrared imaging’, Applied Energy 325, 119788.

• Kellil, N., Aissat, A. and Mellit, A. (2023), ‘Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under algerian climatic conditions’, Energy 263, 125902.

• Kolahi, M., Esmailifar, S. M., Sizkouhi, A. M. M. and Aghaei, M. (2024), ‘Digital-pv: A digital twin-based platform for autonomous aerial monitoring of large-scale photovoltaic power plants’, Energy Conversion and Management 321, 118963.

• Lee, J., Chua, P. C., Liu, B., Moon, S. K. and Lopez, M. (2025), ‘A hybrid data-driven optimization and decision-making approach for a digital twin environment: Towards customizing production platforms’, International Journal of Production Economics 279, 109447.

• Montes-Romero, J., Heinzle, N., Livera, A., Theocharides, S., Makrides, G., Sutterlueti, J., Ransome, S. and Georghiou, G. E. (2024), ‘Novel data-driven health-state architecture for photovoltaic system failure diagnosis’, Solar Energy 279, 112820.

• Mousavi, R., Mousavi, A., Mousavi, Y., Tavasoli, M., Arab, A., Kucukdemiral, I. B., Alfi, A. and Fekih, A. (2025), ‘Revolutionizing solar energy resources: The central role of generative ai in elevating system sustainability and efficiency’, Applied Energy 382, 125296.

• Shen, Z., Xu, W., Li, W., Shi, Y. and Gao, F. (2023), ‘Digital twin application for attack detection and mitigation of pv-based smart systems using fast and accurate hybrid machine learning algorithm’, Solar Energy 250, 377–387.

• Yalçin, T., Solà, P. P., Stefanidou-Voziki, P., Domínguez-García, J. L. and Demirdelen, T. (2023), ‘Exploiting digitalization of solar pv plants using machine learning: Digital twin concept for operation’, Energies 16(13), 5044.

• Yao, S., Kang, Q., Zhou, M., Abusorrah, A. and Al-Turki, Y. (2021), ‘Intelligent and data-driven fault detection of photovoltaic plants’, Processes 9(10), 1711.

• Yu, W., Liu, G., Zhu, L. and Zhan, G. (2024), ‘Enhancing interpretability in data-driven modeling of photovoltaic inverter systems through digital twin approach’, Solar Energy 276, 112679.

• Zhang, X., Li, Y., Li, T., Gui, Y., Sun, Q. and Gao, D.W. (2024), ‘Digital twin empowered pv power prediction’, Journal of Modern Power Systems and Clean Energy 12(5), TBD.

• Zulfauzi, I. A., Dahlan, N. Y., Sintuya, H. and Setthapun,W. (2023), ‘Anomaly detection using k-means and long-short term memory for predictive maintenance of large-scale solar (lss) photovoltaic plant’, Energy Reports 9, 154–158

Descargas

Publicado

2025-05-08