Modelado computacional de complejos dinucleares de cobre(I) y evaluación como sensibilizadores para celdas solares tipo Grätzel

Authors

  • Ricardo Moreno-Inzunza
  • Jesús Baldenebro-López
  • Juan Pedro Palomares-Báez
  • Rody Soto-Rojo
  • Daniel Glossman-Mitnik

DOI:

https://doi.org/10.59730/rer.v12n57a5

Keywords:

DFT, co-sensibilizadores, DSSC, Cu(I), complejos dinucleares

Abstract

Dos complejos homolépticos dinucleares a base de cobre(I) y ligandos de piridil-triazol con sustituyentes de tiazol y tiadiazol se estudiaron por medio de cálculos de Teoría de Funcionales de la Densidad (DFT). Las propiedades optoelectrónicas fueron determinadas para su evaluación como potenciales sensibilizadores en celdas solares tipo Grätzel (DSSCs). Los compuestos estudiados mostraron propiedades estructurales deseables, presentando geometrías del tipo balancín sobre los centros de coordinación con valores de τ4 entre 0.42 y 0.45. Los niveles energéticos del orbital molecular más alto ocupado (HOMO) y del orbital molecular más bajo desocupado (LUMO) de los complejos dinucleares se encontraron en -6.59 eV y -3.17 eV para el primer complex y en -6.66 eV y -3.36 eV para el segundo compuesto, respectivamente. Además, las propiedades de absorción de luz visible los posicionan como excelentes candidatos para su utilización tanto como sensibilizadores como co-sensibilizadores debido a la variedad de bandas formadas, alcanzando los 526 nm, y las transiciones metal-ligando registradas.

References

Abdel Aal, S., & Awadh, D. (2023). The effect of central transition metals and electron-donating substituent on the performances of dye/TiO2 interface for dye-sensitized solar cells applications. Journal of Molecular Graphics and Modelling, 123(2023), 108525. https://doi.org/10.1016/j.jmgm.2023.108525

Báez-Castro, A., Baldenebro-López, J., Cruz-Enríquez, A., Höpfl, H., Glossman-Mitnik, D., Miranda-Soto, V., Parra-Hake, M., Reynoso-Soto, E., & Campos-Gaxiola, J. J. (2017). Heteroleptic Cu(I) complexes containing polypyridyl ligands and triphenylphosphine: Synthesis, structure, photophysical properties, DFT studies and applications in co-sensitized solar cells. Inorganica Chimica Acta, 466, 486–496. https://doi.org/10.1016/j.ica.2017.07.007

Conradie, J. (2022). DFT Study of bis(1,10-phenanthroline)copper complexes: Molecular and electronic structure, redox and spectroscopic properties and application to Solar Cells. Electrochimica Acta, 418(2022), 140276. https://doi.org/10.1016/j.electacta.2022.140276

Conradie, J. (2023a). Bis(1,10-phenanthroline)copper: TDDFT and “reactivity descriptors - experimental reduction potentials” relationship data. Chemical Data Collections, 44(2023), 101005. https://doi.org/10.1016/j.cdc.2023.101005

Conradie, J. (2023b). DFT study of UV–vis-properties of thiophene-containing Cu(β-diketonato)2 – Application for DSSC. Journal of Molecular Graphics and Modelling, 121(2023), 108459. https://doi.org/10.1016/j.jmgm.2023.108459

Conradie, J. (2024). Effective dyes for DSSCs–Important experimental and calculated parameters. Energy Nexus, 13, 100282. https://doi.org/10.1016/j.nexus.2024.100282

Dennington, R., Keith, T. A., & Millam, J. M. (2019). GaussView 6 (6). Semichem Inc. Shawnee Mission KS.

Fagnani, F., Colombo, A., Dragonetti, C., & Roberto, D. (2023). Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules, 29(1), 6. https://doi.org/10.3390/molecules29010006

Franchi, D., Leandri, V., Pizzichetti, A. R. P., Xu, B., Hao, Y., Zhang, W., Sloboda, T., Svanström, S., Cappel, U. B., Kloo, L., Sun, L., & Gardner, J. M. (2022). Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 5(2), 1460–1470. https://doi.org/10.1021/acsaem.1c02778

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian, Inc., Wallingford CT, 2016 (C.01). C.01.

Godbout, N., Salahub, D. R., Andzelm, J., & Wimmer, E. (1992). Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Canadian Journal of Chemistry, 70(2), 560–571. https://doi.org/10.1139/v92-079

Gorelsky, S. I. (1997). AOMix: Program for Molecular Orbital Analysis (6.92).

Hehre, W. J., Stewart, R. F., & Pople, J. A. (1969). Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. The Journal of Chemical Physics, 51(6), 2657–2664. https://doi.org/10.1063/1.1672392

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864

Housecroft, C. E., & Constable, E. C. (2022). Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chemical Science, 13(5), 1225–1262. https://doi.org/10.1039/d1sc06828h

Inomata, T., Hatano, M., Kawai, Y., Matsunaga, A., Kitagawa, T., Wasada-Tsutsui, Y., Ozawa, T., & Masuda, H. (2021). Synthesis and physico-chemical properties of homoleptic copper(I) complexes with asymmetric ligands as a dssc dye. Molecules, 26(22), 1–12. https://doi.org/10.3390/molecules26226835

Jayapal, M., Haque, A., Al-Busaidi, I. J., Al-Rasbi, N., Al-Suti, M. K., Khan, M. S., Al-Balushi, R., Islam, S. M., Xin, C., Wu, W., Wong, W.-Y., Marken, F., & Raithby, P. R. (2018). Dicopper(I) Complexes Incorporating Acetylide-Functionalized Pyridinyl-Based Ligands: Synthesis, Structural, and Photovoltaic Studies. Inorganic Chemistry, 57(19), 12113–12124. https://doi.org/10.1021/acs.inorgchem.8b01684

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange Correlation Effects. Physical Review, 140(4A), 1133–1138.

Korir, B. K., Kibet, J. K., & Ngari, S. M. (2024). A review on the current status of dye-sensitized solar cells: Toward sustainable energy. Energy Science and Engineering, 12(8), 3188–3226. https://doi.org/10.1002/ese3.1815

Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1), 117–129. https://doi.org/10.1016/0301-0104(81)85090-2

Miertus, S., & Tomasi, J. (1982). Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chemical Physics, 65(2), 239–245. https://doi.org/10.1016/0301-0104(82)85072-6

O’Regan Brian, & Grätzel Michael. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Letters to Nature, 353(6346), 737–740.

Pascual‐ahuir, J. L., Silla, E., & Tuñon, I. (1994). GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent‐excluding surface. Journal of Computational Chemistry, 15(10), 1127–1138. https://doi.org/10.1002/jcc.540151009

Peñuelas, C. A., Campos-Gaxiola, J. J., Soto-Rojo, R., Cruz-Enríquez, A., Reynoso-Soto, E. A., Miranda-Soto, V., García, J. J., Flores-Álamo, M., Baldenebro, J., & Glossman-Mitnik, D. (2023). Synthesis of a New Dinuclear Cu(I) Complex with a Triazine Ligand and Diphenylphosphine Methane: X-ray Structure, Optical Properties, DFT Calculations, and Application in DSSCs. Inorganics, 11(10), 379. https://doi.org/10.3390/inorganics11100379

Peppas, A., Sokalis, D., Perganti, D., Schnakenburg, G., Falaras, P., & Philippopoulos, A. I. (2022). Sterically demanding pyridine-quinoline anchoring ligands as building blocks for copper(i)-based dye-sensitized solar cell (DSSC) complexes. Dalton Transactions, 51(39), 15049–15066. https://doi.org/10.1039/d2dt02382b

Portillo-Cortez, K., Martínez, A., Dutt, A., & Santana, G. (2019). N719 Derivatives for Application in a Dye-Sensitized Solar Cell (DSSC): A Theoretical Study. Journal of Physical Chemistry A, 123(51), 10930–10939. https://doi.org/10.1021/acs.jpca.9b09024

Risi, G., Devereux, M., Prescimone, A., Housecroft, C. E., & Constable, E. C. (2023). Back to the future: asymmetrical DπA 2,2′-bipyridine ligands for homoleptic copper(i)-based dyes in dye-sensitised solar cells. RSC Advances, 13(7), 4122–4137. https://doi.org/10.1039/d3ra00437f

Sosa, C., Andzelm, J., Elkin, B. C., Wimmer, E., Dobbs, K. D., & Dixon, D. A. (1992). A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. Journal of Physical Chemistry, 96(16), 6630–6636. https://doi.org/10.1021/j100195a022

Soto-Rojo, R., Baldenebro-López, J., & Glossman-Mitnik, D. (2015). Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT. Physical Chemistry Chemical Physics, 17(21), 14122–14129. https://doi.org/10.1039/C5CP01387A

Soto, S., Campos, J. J., Reynoso, E. A., Cruz, A., Baldenebro, J., Höpfl, H., García, J. J., Flores, M., Miranda, V., & Glossman, D. (2022). Synthesis, Crystal Structure, DFT Studies and Optical/Electrochemical Properties of Two Novel Heteroleptic Copper(I) Complexes and Application in DSSC. Crystals, 12(1240), 1–19. https://doi.org/10.3390/cryst12091240

Stoïanov, A., Gourlaouen, C., Vela, S., & Daniel, C. (2018). Luminescent Dinuclear Copper(I) Complexes as Potential Thermally Activated Delayed Fluorescence (TADF) Emitters: A Theoretical Study. Journal of Physical Chemistry A, 122(5), 1413–1421. https://doi.org/10.1021/acs.jpca.7b11793

Tomás, F. M. A., Calvo, N. L., Vega, N. C., Vieyra, F. E. M., Vega, D. R., Comedi, D., Katz, N. E., & Fagalde, F. (2024). Syntheses, characterization, crystal structures and applications as sensitizers in solar cells of novel heteroleptic Cu(I) complexes containing nitrile-substituted 2,2′-bipyridyl ligands. Dalton Transactions, 53(2), 808–819. https://doi.org/10.1039/D3DT02777E

Wei, S., Shao, Y., Shi, X., Lu, X., Li, K., Zhao, Z., Guo, C., Zhu, H., & Guo, W. (2016). Heteroleptic Cu(I) complexes integrating functionalized chromophores for dye-sensitized solar cells: An in-depth analysis of electronic structure, spectrum, excitation, and intramolecular electron transfer. Organic Electronics, 29(2016), 142–150. https://doi.org/10.1016/j.orgel.2015.12.004

Xu, W.-Z., Song, L., Jin, H.-X., Jin, D.-F., Wei, X.-Y., Zhang, Y.-X., Shen, H.-Y., & Chai, W.-X. (2024). A luminescent binuclear Cu(I) complex constructed by bipyridine, TD-DFT calculation, and its fluorescent sensing properties for VOCs. Journal of Molecular Structure, 1318(Cicc), 139283. https://doi.org/10.1016/j.molstruc.2024.139283

Xu, Z., Lu, X., Li, Y., & Wei, S. (2020). Theoretical analysis on heteroleptic Cu(I)-based complexes for dye-sensitized solar cells: Effect of anchors on electronic structure, spectrum, excitation, and intramolecular and interfacial electron transfer. Molecules, 25(16). https://doi.org/10.3390/molecules25163681

Yam, V. W.-W., & Kwok, W.-K. (2024). Photophysical properties of copper(I), zinc(II) and nickel(II) complexes. In Photophysical properties of copper(I), zinc(II) and nickel(II) complexes (pp. 1–31). https://doi.org/10.1016/bs.adioch.2024.01.003

Zhang, Q., Wei, S., Zhou, S., Wei, X., Xu, Z., Wang, Z., Wei, B., & Lu, X. (2020). Theoretical Investigation on Copper(I) Complexes Featuring a Phosphonic Acid Anchor with Asymmetric Ligands for DSSC. ACS Applied Electronic Materials, 2(7), 2141–2150. https://doi.org/10.1021/acsaelm.0c00353

Zhang, X., Song, L., Hong, M., Shi, H., Xu, K., Lin, Q., Zhao, Y., Tian, Y., Sun, J., Shu, K., & Chai, W. (2014). Luminescent dinuclear copper(I) halide complexes double bridged by diphosphine ligands: Synthesis, structure characterization, properties and TD-DFT calculations. Polyhedron, 81, 687–694. https://doi.org/10.1016/j.poly.2014.07.034

Zhao, J., Ji, S., Wu, W., Wu, W., Guo, H., Sun, J., Sun, H., Liu, Y., Li, Q., & Huang, L. (2012). Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: From molecular design to applications. RSC Advances, 2(5), 1712–1728. https://doi.org/10.1039/c1ra00665g

Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theoretical Chemistry Accounts, 120(1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x

Published

2025-10-03